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A BOUNDARY INTEGRAL METHOD FOR

AN INVERSE PROBLEM IN THERMAL IMAGING 1

Kurt Bryan

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

Abstract

This paper examines an inverse problem in thermal imaging, that of recovering a void in a

material from its surface temperature response to external heating. Uniqueness and contin-

uous dependence results for the inverse problem are demonstrated and a numerical method

for its solution developed. This method is based on an optimization approach, coupled with

a boundary integral equation fornmlation of the forward heat conduction problem. Some

convergence results for the method are proved and several examples are presented using

computationally generated data.

1This research was carried out while the author was in residence at the Institute for Computer Applications

in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665, which is operated
under National Aeronautics and Space Administration contracts NAS 1-18605 and NAS 1-19480.





1 Introduction

Thermal imaging is a technique of recent interest for the nondestructive evaluation of mate-

rials. This method attempts to characterize the internal structure of a sample (perhaps to

locate flaws-disbonds, bubbles, corrosion, etc.) by using its surface temperature response to

an external heating. Some recent work and techniques in this subject are detailed in [3], [4],

[5], [7] and [9].

In this paper the problem of detecting and identifying an unknown internal void in a

planar domain using thermal imaging is examined. The void could represent a defect in the

material, or it could be a feature which is supposed to be present, e.g., a conduit, whose

location or geometry is to be assessed. The focus is on the case in which the thermal

stimulus, an applied heat flux at the boundary of the sample, is periodic. After separating

the temporal and spatial variables, one obtains an inverse or domain identification problem

for an elliptic equation. Results concerning the uniqueness and continuous dependence for

the inverse problem will be examined and an algorithm for the numerical recovery of the

void will be presented. This algorithm will be applied to examples using computationally

generated data with and without noise.

The outline of the paper is as follows. Section 2 concerns the mathematical formulation

of the forward heat conduction problem witti periodic heating and demonstrates how this

leads to an inverse problem for an elliptic equation. Section 3 contains an identification

result for the inverse problem and shows that an internal void is determined by the bound-

ary temperature response to external heating. This section also contains results concerning

sensitivity or continuous dependence for estimates of the internal void based on the bound-

ary measurements. These results rely on reformulating the heat conduction problem as an

integral equation on the boundary of the sample. Section 4 examines a numerical method

for the solution of the forward problem based 0ii the boundary integral formulation and its

incorporation into a least-squares routine for solution of the inverse problem. It is shown

that with reasonable hypotheses on the class of voids, the numerical method will converge

to the solution of the least-squares formulation of the inverse problem. Section 5 presents

the results of this algorithm applied to computationally generated data.



2 Mathematical Formulation

The sample (without void) to be tested will be denoted by f_, a bounded region in IR2 with

C 2 boundary. The internal void will be denoted by D, where D CC f_ with C 2 boundary.

The function T(t, x) will denote the solution to the heat equation

Ot
---nAT = 0 inf_\D
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where v is the outward unit normal vector field on the boundary of f_ \ D, _ is tile thermal

diffusivity of fl, a is the thermal conductivity of f_, To denotes the initial temperature of

the region and .q is the heat flux at the boundary. Both n and a are assumed to be known

constants. Of course it is assumed that oa is not identically zero.

The heat flux h(x, t) will be assumed to be periodic in time with known frequency _ so

that

_(x,t) = ne{d_'g(x)}

for some complex valued function g(x). Actually, .0 would also generally include a steady-

state term as well, but since only the periodic response is of interest, this term can be ignored.

Under this assumption one can separate variables to find that 2r(x, t) = Re{r(x)d _} where

T(x) satisfies

AT-iWT = 0 inf_\D
K

OT

OT

lov = O,

(2.1)

at least for time large enough so that the initial conditions do not matter. Note that the

function r(x) solving (2.1) will be complex-valued, consisting of a real, or in phase, and

imaginary, or out of phase part.



The inverseproblemof interest is the following: Givena known applied heat flux g, can

the shape and location of the void D be uniquely determined from measurements of T on

the boundary of f_? Provided a uniqueness result holds, one would also like to know whether

D depends continuously on measurements of T on 0f_,that is, how sensitive estimates of

D are to noise in the data. Finally, one would like an efficient computational algorithm for

recovering an estimate of D from actual data.

3 The Inverse Problem

3.1 Uniqueness

A uniqueness result for the inverse problem follows easily from basic facts about elliptic

operators.

Theorem 3.1 (Uniqueness) Let D1 and D2 be two subdomains of Yl and TI and T2 the

corresponding solutions to equation (2. l) with nonzero Neumann data g. Let S be a portion

of O_ with positive measure. Then T1 = T2 on S implies that D1 = D2.

Proof: The functions T1 and T2 have the same Neumann data g and, since /71 and T2

agree on ,S', the same Cauchy data. Unique continuation for elliptic operators implies that

711 and T2 agree on _ \ (D1 U D2). Then, for example, the function T2 has a vanishing normal

derivative on the region D_ \ D2, hence is constant on D1 \ D2. If D_ \ D2 # 0 then by the

maximum principle/'2 must be constant throughout ft \ D2, contradicting g -_ 0. A similar

argument shows that if D2 \ D_ # 0 then T1 would be constant on f_ \ D_, again contradicting

g # 0, hence D1 = D2.

3.2 Boundary Integral Formulation

In order to investigate continuous dependence and numerical methods for the recovery of

D it will convenient to reformulate the heat conduction problem as a boundary integral

equation. This offers the advantage that one only has to solve for the temperature on the

3



boundary of the sample,rather than the interior. Sincethe boundary is the only place the

temperature is measured,this is the only placeits value is needed.

Use['(r) to denotea fundamental solution or Green'sfunction for the operator (A - _).

Sucha fundamental solution is givenby

_(_) 1 I,(o(reirl4f-_)
2_r

1 (ker(r_--_)+ ikei(r_/_-_-))
27r

where K0 is the zero order modified Bessel function of the second kind and ker and kei denote

the kelvin functions. Efficient routines for computing the kelvin functions can be found in

[1]. Define

r(x,v)=  (Ix- vl).

The function F satisfies the heat equation in the y variable for fixed x, except at x = y,

where it has a logarithmic singularity. Standard potential theory arguments (see [6], chapter

3) show that the elliptic problem given by equation (2.1) can be formulated as a boundary

integral equation,

1 /0 /0- _T(x) + T(y)O,_r(x,v)dS_ = r(x,y)g(y)dS_ (3.1)
(a\D) (a\D)

for each x C 0(f_ \ D) where 0._ is the normal derivative in the y variable and dS_ is surface

measure. We will use K(x,V) to denote the kernel &_r(x,v) for _,v e O(a \ D) and use S

to denote the operator

(s¢)(z) = _(_\_)K(.,y)¢(v)d&. (a.2)

The operator S is bounded and compact on C(O(_ \ D)), the space of continuous functions

' I + S is a second kind Fredhohn operator. Uniqueness of the solutionon 0(a \ D), hence -_

to equation (3.1) follows from uniqueness of the solution to the forward problem. By the

Fredholm alternative, the equation (-½I + S)¢ = g is solvable, at least for smooth enough

g. In particular, (-½ + ,9)-' exists and is bounded on C(O(gt\D)). The solution to equation

(3.1) yields the temperature T(x) on 09t and OO. If needed, the temperature for x E _ \ D

can be found from the relation (Green's third identity)

T(x) = jfo(a\D) (T(y)O._ F(x,y) - r(x, y)g(y) ) dS_.

4
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3.3 Restrictions on the Domain

In order to obtain continuous dependence results, a few restrictions on the class of voids

and their parameterization are needed. First, let us use 02[0, 1] to denote the space of C 2

functions on [0, 1] where the endpoints 0 and 1 are identified with each other. This space

can be normed by II l[--sup, E0,111D  l, _<2. We assume that D depends on finitely

many parameters, D = D(q) with q C Q cc IRm and where:

(a) ql = q2 implies D(ql) = D(q.2) (unique parameterization).

(b) D(q) C f_' CC f_ for q e Q (D(q) stays away from Oa).

(c) The closed curves OD(q) are parameterized as x(q,t) = (xl(q,t),x2(q,t)) for q • Q,

ds j(x 120 _< t < 1, with x_(q,t) a 02 function of t for each q • Q and -Jr = + (x_) 2

bounded away from zero. Also, the map q _ x(q,t) is continuous from IR TM to 02[0, 1].

Based on the above assumptions it is not difficult to show that:

(d) For each x • OD(q) there exists an open ball, B,(x), of radius e around x with

e independent of x and q such that :the curve OD(q)Cl B_(x) is parameterized by

(xl(q,t),x2(q,t)) with tin some connected interval.

The continuity of q -* 0 2 and compactness of Q imply that the 0 2 norm of x(q, t) as a

function of t is uniformly bounded over q • Q. Also, for q • Q the families of functions

x(q, t), x'(q, t) and x"(q, t) are equicontinuous in t, where the prime denotes differentiation

with respect to t.

Lemma 3.1 The family of functions {l((x(q,s),x(q,t)); q • Q}, are (uniformly) equicon-

tinuous in s and t, that is, for each e > 0 there is a 5 > 0 so that

IK(x(q,s),x(q,t))- K(x(q,s'),x(q,t'))] <_ e

for all (s, t) and (s', t') with

Is - s'J <_5, lt - t'l <_5,

and 5 does not depend on s, t or q.



Proof: For brevity let us suppress tile dependence of x() and K() on q and write simply

K(s,t) for K(x(s),x(t)). Also, since F(x,y) = log(ix- Y[) + G(x,y) where G is smooth in

x and y, we will prove the lemma assuming that F(x,y) = log(Ix - Y[); it is easy to check

that the smooth term makes no difference ill the proof.

The stated regularity for K holds on the compact set {(s,t)E [0,1] x [0, 1], is-t[ _> e,

q C Q}, where e is any number greater than zero, for oil this set K is at least G '2. We need

only to show that K(s,t) is uniformly continuous on the set (s,t) E [0,1] x [0, 1], ].s- t[ < e.

Suppose the boundary of D near a point x0 is parameterized by :c(t) = (xl(t),x.a(t)). By

making an appropriate translation and rotation it may be assumed that z0 = x(0) = (0, 0)

and that the boundary is oriented so that the unit normal outward vector in (xl, x2) coor-

dinates is (0, 1). In this case Taylor's theorem can be used to expand x(t) as

al 2

xi(t) = aot + gt + Ri(t)

x_(t) = _t_+ s_(t)
Z,

where

ao = x_ (0)

aa = x_(0)

b = _;'(o)
1 .

Rj(_) = 7(xj(c)- x_(O))t_, j= 1,2,

and c is some point between 0 and t. The functions RI and R2 are functions whose 0 2 norms

can be bounded in terms of tile norms of xl and x_. The unit normal vectors satisfy

,,(t)_ _ x'_(t) = u + G(t)

dS x11(t)= -ao-a,t- R'_(t).__(t ) -gi -

The kernel K(s, t) is then given by

dS

o..r(x(_), x(t))-_- =
1 (xl(s)- xi(t))ui(t) + (x2(s)- x2(t))u2(t))dS

2_ (_,(_) - _,(t))'_ + (x_(_)- _(t))_ dt
1 (xl(s)-- xl(t))x_(t) - (x2(s) - x._(t))x'l(t))

2_ (x,(_) - x,(t))_ + (x_(._)- x_(t))_
(3.3)



•' and ' gives for tlie numerator, after someSubstituting tile above expressions for xl,x2,x_ x 2

simplification,

aob , [as ]n_,m - _ _s - 0 2 + n._(t)(s - t) a0 + 7(_ + t) + [re(s) - m(0l(U + n._(t))

b 2
-(R2(s) - R2(t)) [a0 + alt + R'l(t)]- -_(s - t2)R'l(t).

The denominator becomes 27r times

Taytor's theorem implies that

I

for some point c between s and t. Substituting this into the expression for the numerator

gives

(s -- t) 2 [-aob ÷ (bt + R_(t))R'[(c) - (ao + a,t + R'I(t))R_'(7: ) + a,R'2(t ) - bR'l(t)]
num- 2

where c and _ are between s and t. Doing th e same for the denominator shows

den = 2,_(s t) _ [(a0 + R',(t)) _ + (R;(t)) _ + C,_ + C2t]

where C_ and C2 are functions of s and t whicti can be bounded in terms of the _,2 norm of

x(t). Cancelling the common (s - t) 2 factor, the kernel can be written as

1 -aob + [bt + R'2(t)]R_(c ) -[a0 - a,t - R'I(t)]R_'(_ ) + a,R'.z(t ) - bR',(t) (3.4)
K(s,t) = _ [a0 + R](t)] 2 + [R_(t)] 2 + C,s + C2t

Since R](0) = 0, the kernel is bounded through s = t, for the denominator is bounded

away from zero for s and t in a sufficiently small neighborhood of zero. In fact, by Taylor's

theorem R_(t) = R'_(O) + R_'(e)t = R{'(c)t for some c between zero and t. In addition, since

the functions 6*, and (7,2 can be bounded in terms of the 0 2 norm of x(t) (which is itself

bounded uniformly over Q), the denominator may be bounded uniformly away from zero

for s and t in a neighborhood of 0, with the neighborhood and bound independent of x0

and q. The families of functions x'j(t) and x_(t), as well as R'j(t) and Ry(t), are uniformly

equicontinuous for q C Q, and hence so are both the numerator and denominator of equation



(3.4). Sincethe denominatorof K(s, t) is bounded away from zero, it follows that the family

of functions {K(x(q,s),x(q,t)); q C Q} is uniformly equicontinuous in s and t. •

By parameterizing OD(q) with x(t), 0 _< t < 1 as above and parameterizing 0f_ with x(t),

1 _< t < 2, one can identify the boundary of 0(f_ \ D) with the fixed interval [0, 2). A solution

T(x) to equation (3.1) can be identified with a function T(t) on [0,2) by T(t) = T(x(t)).

For a function _b defined on [0,2) let qSa and q5_ denote the restriction of q_ to [0, 1) and

[1,2), respectively. We will work in the space of functions q5 for which _1 is continuous and

extends continuously to [0, 1] with qia(0) = qS_(1) and for which q52 is continuous and extends

continuously to [1,2] with _2(1) = q52(2). We will denote this space by 0[0,2] and norm it

with the supremum norm. The solutions r(t) to (3.1) lie in this space. One can also identify

the operator S (a function of q) with an integral operator on C[0, 2]. Let us write K(q, s, t)

instead of K(x(q,.s),x(q,t))and define

S(q)+(s) = fo2K(q,s,t)+(t)_t dt. (3.5)

The same argument given in the proof of Lemma 3.1 shows that K(q, s, t) is uniformly

equicontinuous for s and t in [1,2), i.e., for x(s) and x(t) on the boundary of f_ and q C Q,

(actually, K here is independent of q). For s C [0, 1) and t E [1,2) (or vice-versa) K(q,s,t)

is C 2 in .s and t, since in this case z(s) C OD, x(t) G Of_ and by assumption the boundaries

do not intersect, so again K(q,s,t) is uniformly equicontinuous over q E Q. The kernel

K will have a jump discontinuity at s = 1 or t = 1, since there x(t) jumps from OD to

0fL In summary, the family of functions {K(q, s, t); q E Q}, is uniformly equicontinuous on

[p,p+ 1) x [q,q+ 1) p,q = 1,2, with simple jump discontinuities at s = 1 or t = 1.

Another fact worth noting is that the map q --+ K(q, s, t) is continuous as a map from

1Rm to C[0, 2] x C[0, 21, that is, for any e > 0 there is a 5 so that ]q - q] _< 5 implies

sup ]K(q,s,t)- K(gl, s,t] <_ e.
_,te[0,2]

This follows directly from equation (3.4) and the fact that q _ x_(q,t), q --* x_(q,t),

q _ R_(t) and q _ R_(t) are all continuous as maps from IR_ to the space of continu-

ous functions.



3.4 Continuous Dependence

Based on the above assumptions it is possible to prove a version of continuous dependence.

Theorem 3.2 Let % be a sequence in Q and T(%) the corresponding solution to equation

(2.1) with D = D(%). Suppose T(%) _ T(q*) in C(O(f_ \ D)) for some q* E Q. Then

% _ q*.

Proof: The first task is to show that the map q _ 5(q) is continuous. Let 51 = S(q) denote

the boundary integral operator for D = D(q) (considered as an operator on d[0,2]) and

$2 = 5(q + 8q), where q C Q and (_q is some small perturbation in q. As remarked above,

q _ K(q, s, t) is continuous. It follows that q -+ 5(q) is also continuous as a map from IR TM

to the space of operators on 6'[0,2], for if ]K(q + 8q, s,t) - K(q,s,t)l <_e for all s,t e [0,2]

then

II(&¢)(s)- (5,¢)(s)11 _0 2< [K(q+Sq, s,t)-K(q,s,t)]ld_(t)ldt

_< v ll¢ll,

for some constant C, that is, ll5(q + 8q)- 5(q)]l -< Ce for (_q sufficiently small.

The next step is to show that q _ (I - 5(q)) -1 is continuous. The operator (-½I +$1)

is invertible and (-½I + 52) can be inverted with a Neumann series as follows. First note

that

= (-1I2 + - - &))-'

I _1 I
= (-_1+$1)-1(/+( 2 +Si)(51-52))-''

Let R = -(-½I + 51)(51 -- S2)). Given any e > 0 one can choose a I5q[ sufficiently small so

that ][RH _<e and, for e < 1,

= (-2 1+ S,)-1(I + n)-'

= (-1I + S,)-a(I + R + R 2 + ...)

so that

(-_I + 52) -1- (-1I + S_) -a = R + R 2 + ...

9



and

I1(-_I "Jl-S1) -I- (--_I "l- $2)--1 [I < tl_ll (3.6)- 1- IIRII
f

-< 1 - e" (3.7)

Thus the map q --+ (-½1 + Co(q))-1 is continuous and so the map q _ T(q) = (-' _+S(q))-'_

is continuous from IRm to (_[0, 2].

To complete the proof, suppose that the sequence q,, does not converge to q*. Since Q

is compact, some subsequence of q,_ converges to some _ C Q. It can be assumed that this

is simply the sequence q,_. However, continuity of q _ T(q) means that T(q,_) _ T(O),

implying T(q*) = r(c_) and contradicting the uniqueness Theorem 3.1.

4 Numerical Methods

4.1 NystrSm's Method

The following computational approach to ttle inverse problem is based on a least-squares

formulation, finding the model void parameters which best fit the measured data by means

of an optimization method' One drawback to this approach is the need to repeatedly solve

the heat conduction problem (2.1). It is thus advantageous to have an efficient method for

solving this equation. The boundary integral equation approach is such a method, and in

this section we examine a technique for its solution.

The boundary integral formulation (3.1) for ttie solution T to equation (2.1) can be

written

J0'- T(s) + K(s,t)T(t)dt = g(s) (4.1)

dS
where T(s) means T(x(s)) for the parameterization x(s) of 0(f} \ D). Surface measure d-5-

has been included in the kernel K. Let tj and coj j = 1,---, n denote the nodes and weights

of a quadrature rule convergent on the space C[0, 2], so that

_-_wjf(tj) _ f(t)dt
j=l

10
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if f(t) is smooth enough. Actually, we will consider a family of quadrature rules, indexed by

n, with

f02lim __wjf(tj)= f(t)dt
n---* _ j=l

for continuous f, e.g., the n-node composite trapezoidal rule. We will also assume that the

quadrature rule converges uniformly over any set .7" of equicontinuous functions in C[0, 2],

so that if f E .T',

/0 °f(t)dt- _wjf(tj) <_e
j=l

forn >_N(_), Nee) independentof f. The n-nodetrapezoidalrule is an exampleof sucha

family, or more appropriately, tile trapezoidal rule applied separately to each interval [0, 1],

[1,21.

NystrSm's method consists of replacing the integral in equation (4.1) with the quadrature

rule to obtain

Now let s = tl,t2,'"

- }T,,(._)+ __, K(s, tj)wjT,,(tj) = g(s). (4.2)
j--1

to obtain tile n x n linear system

rL

- 1T,_(ti) + __, K(ti,tj)wjT,_(tj) = g(ti). (4.3)
z

j=l

The idea is that Tn(t_) ,_ T(t_). As shown in [2], each solution to equation (4.2) leads to

a solution to equation (4.3) and moreover, each solution to equation (4.3) corresponds to a

unique solution to equation (4.2) with which it agrees at the nodes t_,.-., tn. Equation (4.3)

is the system which is solved numerically although (4.2) is the equation we will use for the

error analysis.

Write equations (4.1) and (4.2) as

(-2I + S)T = g

(-112 +.%)r. = g

where 5', is the operator in equation (4.2). Note that S,, is compact since it is a finite rank

operator on C[0, 2]. Recall that 5' and 5',, depend on the parameter q.

Theorem 4.1 Tn _ T in 6'[0, 2] as n _ cxz. The convergence is uniform over q C Q.

11



In proving this theoremthe following resultwill beuseful. It canbe found in [2],section3.0.

Theorem 4.2 Let X be a Banach space, let S and (,k - 5;) -_ be bounded linear operators

on X, with A 7_ O. Let T be a bounded linear operator on X with the property that either

is an eigenvalue of T or (,k - T) -_ exists (if T is compact, this is satisfied). Further, assume

I[(T- S)TH<

Then (£ - T) -1 exists on X and

II(A-T)-_II_<
1 + ][(A -5')-'JlIITH

IAI- II(A- s)-'llll(T- S)Vll

Furthermore, if ()_ - S)f = g and ()_ - T)h = g then

H(T- 5')Tllllfll+ 11(7_- 5')91t
it/- hll _<II(_- 5')-' II_:: II_-T))-;_l[_ - s-_"

Proof of Theorem 4.1 The proof of Theorem 4.1 is simply an application of Theorem 4.2

with X = 6'[0,2], _ = -1/2' 5' = -5' and T = -S',_. In the previous section it was shown

11 + 5"(q))-att can be uniformlythat the map q _ (-½I + 5"(q))-' is continuous, hence II-

bounded over Q. In order to complete the proof of Theorem 4.1 it must be shown that

11(5"- 5"_)S,_11 _ 0 (4.4)

H(5'-5',_)gll _ 0 (4.5)

E

E

E

as n _ ec, uniformly for q C Q. This, in conjunction with Theorem 4.2, will show that

[IT- T_][ -+ 0 uniformly in q.

From the argument given in section 3, for s C [0, 2] and q C Q, the kernel K(q, s, t) is

uniformly equicontinuous in the t variable. The uniform convergence of [](5'- 5',_)gH to zero

follows from

(5'- 5'_)9(s) fo2(K(s t)g(t)dt- _ K(s, tj)wjg(tj)
j=l

_< 4n)

with e(n) --+ 0 as n -+ oo, independently of q and s. Here we have used the fact that K is

equicontinuous in t and the assumption that the integration rule converges uniformly over

equicontinuous sets in C[0, 2].

12
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The case for the convergence of 11(5'- S,_)S,_II is similar. Let ¢ be a function in C'[0,2]

with I1¢11= 1. Since K is uniformly equicontinuous in s and t,

n

&¢(s + As)- s_¢(_) = _(K(_ + A_,tj)- K(_,tj))_j¢(tj)
j=l

j=l

where e(As) does not depend on s, t or q. For convergent integration rules the stun EjE1 l_Jl

is bounded in n (see [2], part I, section 4, theorem 7), so that £_¢ is an equicontinuous

function, independent of q. The rest of the argument is as in the previous paragraph but

with g replaced by S,_¢. This shows that IICS- S,_)S,,tl --_ 0 uniformly for q E Q and

completes the proof of Theorem 4.1.

4.2 Application to Inverse Problem

Let us suppose that the temperature data for the inverse problem consists of point measure-

ments T_ at points xi on the boundary of _, i = 1,..., M. A reasonable way to attempt a

recovery of the unknown region D is to define the functional

M

J(q) = __,(T(q)(x,)- Ti) 2
i=1

and seek an estinaate of D(q) as the solution to

(IDP) minimize J(q) for q EQ

hi practice the solution to this problem will involve not the true temperature T(q), but

the n-node NystrSm approximation T,_(q). The actual minimization problem solved will be

(IDP) '_ minimize J'_(q) for q E Q

where
M

J'_(q) = __,(Tn(q)(x,) - T,) 2. (4.6)
i=I

Based on the analysis of the convergence of T,_ to T, the following theorem can be stated.
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Theorem 4.3 Let qn be a solution to (IDP) '_. Then as n _ oc), some subsequence of q,_

converges to q* C Q. Moreover, q* is a solution to (IDP).

Note that if the boundary data 7, are consistent with some D(q*) for q* E Q then, since

there is a unique such q*, one can talk about the unique solution to (IDP) and a subsequence

of q,_ will converge to this q*.

Proof of Theorem 4.3: Some subsequence of q,, converges to a point q* E Q by virtue of

the fact that O is compact. Let q,,_ be any sequence in Q converging to q*. From the uniform

convergence of T,, to T over Q we call conclude that

For any q C Q we have

lira Jn(qm) = J(q*). (4.7)

jn(%) < j,_(q).

Taking tile limit over n and using (4.7) shows that

for all q C Q, i.e., q* solves (IDP).

5

J(q*)<_J(q)

Implementation and Examples

5.1 Introduction

In this section the recovery algorithm is implemented and the results of some numerical

experiments are described. One modification is made to the assumptions of the previous

sections: for experimental work it is more convenient to use a sample f_ which is rectangular,

thus the boundary of f_ will not be C 2. This make little difference to the integral equation

formulation, for the operator (I - S(q)), while no longer a second kind Fredholm operator,

is in fact a small perturbation of such an operator. One can still establish the existence and

boundedness of the inverse (I -5'(q))-t; see [t0] for more details. The rest of the arguments

are unchanged. The solution T on the boundary of f_ is still continuous, although it will have

14



"corners" at the correspondingcornersof _. For numerical purposesit is thus beneficial to

usea quadrature rule which allocatesmore nodesnear thesecorners,rather than uniformly

over the boundary of f_. Note that it is still assumedthat OD is C 2.

One other modification will also be made; The heat flux g will be a point heating source,

so that g(x) = 3p, a delta function, where P is the point at which the heat is applied. While

this flux g does not live in the space of functions in which we have been working, as will

be shown one can analytically remove the singularity from the problem and work with a

smooth remainder term which fits the hypotheses made so far. In the examples that follow

we use only the imaginary or out of phase portion of the periodic temperature response T.

This part of the temperature is continuous, even through the singularity at the point heating

source. The real or in phase part of T, however, has a logarithmic singularity at the point

source. In reality one does not have a point source, but for a heat source concentrated in

a small region the in phase response in the region of the source varies radically with the

treat source "footprint", which causes problems in a reconstruction algorithm. In practice

therefore, one excludes the in phase data near the source. For convenience, we simply work

only with the out of phase portion.

One final remark: The linear system obtained via the n-node NystrSm's method can be

written

m(q)T,_(q) = f(q) (5.1)

where A(q) is the matrix generated by the discretization and b(q) is the right hand side of

the discretized integral equation; both depend on the parameter q which defines the void.

As a result, the temperature T,_ also depends on q. The Levenberg-Marquardt optimization

routine used requires the derivatives of the functional J(q) with respect to q which in turn

requires _ On can obtain these derivatives by differentiating equation (5.1) with respect
Oq "

to q to obtain

A(q) O_-_'_ = O-ffOq _-_T,_(q). (5.2)

Both A(q) and f(q) are differentiable with respect to q and if A(q) is not singular then the

above computation is valid, that is, -_q exists and therefore satisfies equation (5.2). Once

T,, has been obtained, -_q can be obtained from (5.2); in fact, the work done in solving the

equation (LU decomposition) can be re-used in computing the derivative. It should be noted
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that the temperature satisfiesequation (5.2) at both the finite-dimensional (matrix) level

or also exists.and infinite dimensional (integral equation) level, i.e., N-q

5.2 Sample Geometry and Implementation

The geometry used for the examples is illustrated in Figure 1. The lower left corner of the

rectangular sample has (x,, z2) coordinates (0, 0). We will examine the case where the voids

are disks of unknown center and radius, D = D(q) with q = (a, b,r) where (a,b)is the center

of the disk in (xl,x2) coordinates and 7" is the radius. The boundary of D is parameter-

ized by xl(t) = a+r cos(2_rt), x2(t) = b+r sin(27rt), 0 _< t < 1. If the length (*1 axis) of a is L

I Point heat source
L

Figure 1: Sample geometry.

and the height (x2 axis) is H then the boundary of f_ is parameterized from t = 1 to t = 2

by

f(.) =

5
(4Lt,0) l_<t<

(L,4H(t-{)) 5- <t < a--4 -- 2

(L _ (t _ a),H) a2 _< t < ar

7<t<2.(O,H-4H(t-_)) __

With appropriate bounds on the range of a, b and r, it is simple to check that this class of

voids and parameterization satisfies the properties of section 3. The dimensions of the sample
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for the present example will be 1.27 cm in length by 0.32 cm in height. All references to

coordinates and sample geometry will be in centimeters. The thermal parameters correspond

to aluminum. As mentioned above, the heat flux will be a point source applied at a points

with (xl,x2) coordinates (Xl, 0.32 cm) on the top of the sample. This source will have

unit (one watt) power. Note that for the full time-dependent problem this means that the

variation in heat flux is one watt.

The quadrature rule used for Nyst6m's method for the solution of equation (3.1) is just

a version of the midpoint or trapezoidal rule with variably spaced nodes. Specifically, let

1 The variable is a parameter to adjust the spacing of thef(x) = 2V-ix v for 0 < x < i. p

nodes. Allocate N nodes t_ (N even) and weights w_ on the interval [0, 1] by

_--V2_ = _

f( N J' i 1, . . . ,N2

ti =

N
1 -- tX-i+l, i = -_ + 1,..., N

The corresponding weights are

/ l(ti+t2), i= 1

w_ = _1(t_+l - t_-l), i = 2, ..., N

1 1-- _(tU-1 + tu), i = N.

This rule allocates nodes and weights to (0, 1), excluding the endpoints. For p = 1 it is just

the midpoint rule on [0, 1]. Choosing p > 1 causes the nodes to "bunch up" near 0 and 1.

For each of the four sides of Off the nodes are allocated by mapping the above nodes on

[0, 1] to the corresponding interval in t, e.g., the nodes are allocated on the bottom of fl by

t
transforming the nodes on [0, 1] as t --* g + 1 with the corresponding change in the weights.

The parameter p is chosen to be 2.0; this allocates more nodes close to the corners of Ft.

On the void boundary OD the nodes are evenly spaced with weights corresponding to the

trapezoidal rule on [0, 1]. The typical number of nodes used is 10 to 30 on each side of

and 20 to 40 on the void boundary.

In order to deal with the singular boundary heating, first note that if F(x, y) is a funda-

mental solution to L = (/%- _) then LyF(x,y) = 0 for y -_ x, where L v means the operator
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applied in the Y variable Moreover, if P E 0f_ and T(y) = -2F(P, y)/a then it can be shown

that

= - 20. r(e,v) on 0a,

that is, for delta function heating T is the solution up to a nonsingular remainder term.

The remainder term on the right hand side is actually continuous on 0F_, or, more precisely,

extends continuously through y = P. Thus one can analytically remove the singularity

associated with the point heating and simply solve for the smoother remainder term. The

forward heat conduction problem for the example is then

(A-iw)T = 0 in a\D

ao_r = 20._r(P,y) on O(a\D).

The full solution with delta function heat flux would be given by the sum T(y) + T(y). This

solution has a logarithmic singularity in its real part and has smooth imaginary part.

For reconstruction purposes, the temperature in the present examples will only be mea-

sured along the top of the sample, so that the least squares fit functional (4.6) includes only

this data. The heating frequency is in the range of 1 to 5 Hz. For each heating source the

temperature response is measured at 40 equispaced points along the top of the sample.

=

5.3 Strategy

One of the necessities of an optimization approach is that one have a reasonable initial guess

at the true void before beginning the optimization procedure, or else risk become trapped in

a local minimum far from the "true" solution. This is particularly applicable in the present

case, as illustrated by the following figures. The sample with void is shown in Figure 2. The

sample is again aluminum with the same dimensions as in Figure 1. The true void D* (solid

outline) has a radius of 0.06 cm and is centered at (Xm, x2) coordinates (0.88 cm, 0.24 cm).

The heat source is applied directly on top of D* at 3 Hertz. The prospective void D is fixed

to have the same radius and x2 coordinate as D*; its xl coordinate is allowed to vary from

0.15 cm to 1.15 cm. The value of the functional J(q) as a function of xl is shown in Figure

3. The functional is of course zero when the xl coordinates of D and D* coincide and tile

18

r

L

_E

=



T
0.32 cm

l

Heating

t ! _

, ____>

D .... D

I 1.27 cm {

Figure 2: Sample geometry for least-squares functional example.

0.5
Residual vs. void x-coordinate

0.4
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vo 0.3
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(t)

go.2
a

0.1

0.0 I

0.2

I I 1

0.4 0.6 0.8 1.0

D x-coordinGte, cm

Figure 3: Functional J(q) versus D Xl coordinate.

functional rises _teeply as one moves away from the minimum. However, if one used an
1

optii-nization mefhod with an initial guess which was far from the correct value (xl < 0.5

cm) then tile optimization routine would probably not be successful, for in this region the

functional is almost flat-actually, it slopes slightly away from the minimum. This illustrates

the need for a reasonable initial guess at the xl coordinate of the void D*.

In the previous example the heat source was applied directly on top of the true void

D*. In reality if a single heat source is applied it will not likely fall on top of or even near

19



D*. Figure 4 illustrates the same situation as Figures 2 and 3 but with the heat source

far (x, coordinate 0.35 cm) from D*. Here the situation is even worse, for now the least-

squares functional has many local minima to trap any optimization method started with

an zl coordinate far from D*. Also, since the heat source does not "illuminate" D*, the

functional is very flat near the minimum. In the presence of noise one would not be able to

locate this minimum with any accuracy.

0.5
Residuol vs. void x-coordinote

0.4

0.3
o

gO.2[

r_

0.1

0.0 ' ' _ ---_-_
0.2 0.4 0.6 0.8 t .0

D x-coordinote, cm

Figure 4: Functional Y(q) versus D x, coordinate.

This leads to the following strategy for locating a void, illustrated in Figure 5: Apply

the heat source at a number of different points along the top the sample. For each different

heating location, take the corresponding temperature measurements along the top of the

sample. As one passes the heating source over a void it will be detected by a change in the

temperature response. Suppose this occurs when the heating source has an xl coordinate

equal to a. Then begin the optim_zatlon with initial guess xl = a and x2 and r anything

reasonable. This should provide a reasonable approximation to the correct Xm coordinate of

the void; the initial guess at x2 and r is much less crucial.

=
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9 8 7 6 5 4 3 2 1

Figure 5: Strategy for applying heat sources.

5.4 Results

This procedure is illustrated by the graphs in Figure 6. The actual void D* is located at

(xl,x2) coordinates (0.77 cm, 0.24 cm) with radius 0.06 cm. A total of 9 point heating

sources at 3 Hertz were applied on the sample top surface, equispaced, spanning one half

of the sample length, with source 5 centered on the top surface. The graphs show the out

of phase or imaginary portion of the temperature response for each source location. The

temperature response changes most rapidly and peaks between heating locations 3 and 4.

Contrast this to the temperature response when no void is present, shown in Figure 7; the

response does not change, since nothing under the heating source changes as the source

moves. A Levenberg-Marquardt algorithm implemented along the lines in [8] was used to

recover an estimate of the void D*, using only the peak temperature response data, heating

sources 3 and 4. The initial guess at the xl coordinate was halfway between these sources

at 0.75 cm. The x: and radius initial guesses were 0.16 cm and 0.1 cm, respectively. The

optimization code converges to the correct void in 11 iterations, reducing the residual from

0.154 to less than 0.002. However, no noise was present.

As a more realistic example, we take the same geometry and void as the previous ex-

ample but with 20 percent zero-mean gaussian noise (measure as percent of signal RMS

value) added to the temperature response. The responses are shown in Figure 8. The largest

response is for position 3. The data for heating positions 2, 3 and 4 were then used in the

optimization with initial guess xl -- 0.79 cm (the xl coordinate for source 3), x2 = 0.16 cm
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and r = 0.1 cm. The initial residual is 0.406. The optimization routine reduces this to 0.381

in 12 iterations. The final estimate for the void is ah = 0.755 am, *2 = 0.22 am, r = 0.067

cm. The true void is shown as the solid outline in Figure 9 and the and recovered estimate

as the dotted outline.
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Figure 6: Out of phase temperature for varying heat source locations.
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Figure 7: Out of phase temperature for varying heat source locations, no void.
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Figure 8: Out of phase temperature for varying heat source locations, 20 percent noise.
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6 Conclusion

The problem of recovery a void in a material sample based on the sample's surface tem-

perature response to external heating has been considered. Uniqueness and continuous

dependence results have been shown, and an optimization based algorithm for recovering

an estimate of the void has been demonstrated. Much of this work rests on reformulating

the heat conduction problem as a boundary integral equation, which provides a means of

rapidly solving the heat conduction equations. The algorithm was run for the simple case

of a circular void and computationally generated data. This algorithm exhibits some of the

problems that optimization approaches are heir to, specifically, the likelihood that a poor

initial guess will not converge to a global minimum, and some strategies for overcoming this

have been described.

Collection of actual data from a experimental setup at NASA Langley Research Center

has already been performed. Preliminary analysis of this data shows good agreement with

the heat conduction model and the ability to actually recover subsurface voids. The analysis

of this experimental data will be reported elsewhere. Of interest for future research is a study

of the sensitivity of this thermal technique, e.g., the size of voids which can be detected at

various depths. Techniques for voids of different shapes (especially cracks or disbonds) should

also be examined. The heat conduction model could also be improved; zero boundary flux

away from the source becomes unrealistic at low frequencies. We would also like to pursue a

full three-dimensional heat conduction model leading to a two-dimensional boundary integral

formulation. Such a formulation would require a finite or boundary element technique for

the numerical solution, rather than NystrSm's method.
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